Cyber Physical System based Proactive Collaborative Maintenance
ECSEL-2014-1 Project – MANTIS
Project number: 662189
“Maintenance is no longer a necessary evil that costs what it costs, but an important function that creates additional value in the business process”

“New business models with a stronger service orientation are seen as an instrument to react to the upcoming competition and future challenges”
Consortium

12 countries

ECSEL-2014-1 Project – MANTIS Proposal number: 662189
<table>
<thead>
<tr>
<th>Consortium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mondragon</td>
</tr>
<tr>
<td>uniBertsitatea</td>
</tr>
<tr>
<td>IK4-Ikerlan</td>
</tr>
<tr>
<td>IK4-Tekniker</td>
</tr>
<tr>
<td>Fagor</td>
</tr>
<tr>
<td>Fagor Arrasate</td>
</tr>
<tr>
<td>Goizper Group</td>
</tr>
<tr>
<td>Acciona Infraestructuras</td>
</tr>
<tr>
<td>MSI grupo</td>
</tr>
<tr>
<td>VTT</td>
</tr>
<tr>
<td>Lapin AMK</td>
</tr>
<tr>
<td>nome</td>
</tr>
<tr>
<td>Fortum</td>
</tr>
<tr>
<td>SOLTEQ</td>
</tr>
<tr>
<td>Wapice Technology Partner</td>
</tr>
<tr>
<td>Bergen University</td>
</tr>
<tr>
<td>Danfoss</td>
</tr>
<tr>
<td>Universal Foundation</td>
</tr>
<tr>
<td>HG Electric A/S</td>
</tr>
<tr>
<td>Vestas</td>
</tr>
<tr>
<td>Sirris</td>
</tr>
<tr>
<td>ILIAS</td>
</tr>
<tr>
<td>Atlas Copco</td>
</tr>
<tr>
<td>BE Group</td>
</tr>
<tr>
<td>Philips</td>
</tr>
<tr>
<td>S&t</td>
</tr>
<tr>
<td>TU/e (Technische Universiteit Eindhoven)</td>
</tr>
<tr>
<td>University of Groningen</td>
</tr>
<tr>
<td>UNINOVA</td>
</tr>
<tr>
<td>ISEP (Instituto Superior de Engenharia do Porto)</td>
</tr>
<tr>
<td>INK (Instituto de Engenharia de Sistemas e Computadores)</td>
</tr>
<tr>
<td>Inesc</td>
</tr>
<tr>
<td>Adira</td>
</tr>
<tr>
<td>AnsaldoSTS</td>
</tr>
<tr>
<td>CINI (Coordinamento Italiano Network Internazionali)</td>
</tr>
<tr>
<td>AIT (Austrian Institute of Technology)</td>
</tr>
<tr>
<td>HBM</td>
</tr>
<tr>
<td>Innotec UK</td>
</tr>
<tr>
<td>AITIA (Aitia - Institute for Intelligent Communication Age)</td>
</tr>
<tr>
<td>Múegyeten 1782</td>
</tr>
<tr>
<td>"Jožef Stefan" Institute</td>
</tr>
<tr>
<td>XLAB Not Idle</td>
</tr>
<tr>
<td>Fraunhofer ISE</td>
</tr>
<tr>
<td>m2xpert.org</td>
</tr>
<tr>
<td>Still</td>
</tr>
<tr>
<td>Liebherr</td>
</tr>
<tr>
<td>Bosch</td>
</tr>
</tbody>
</table>

ECSEL-2014-1 Project – MANTIS Proposal number: 662189
What is the life expectancy of an asset’s component or part?

How can I perform in depth root cause failure analysis on my process and equipment?

How can I optimize my maintenance plan?

How do I achieve optimal equipment efficiency and availability?

How can I predict an impending equipment failure and the cause?

How can I reduce unscheduled maintenance and its high costs?

How can I detect warranty issues sooner?
Objective

The main objective of MANTIS is to develop a Cyber Physical System-based Pro-active Maintenance Service Platform Architecture enabling Collaborative Maintenance Ecosystems
Objective

- Reduce the adverse impact of maintenance on productivity and costs
- Increase the availability of assets
- Reduce time required for maintenance tasks
- Improve the quality of the maintenance service and products
- Improve labor working conditions and maintenance performance
- Increase sustainability by preventing material loss (due to out-of-tolerance production)
Embedded solutions

- New sensing CPS to capture maintenance relevant/critical information
- Virtual Plug & Play
 - Easy to configure and deploy complex maintenance services
- Secure wireless solutions
 - Increasing the possibility to reach inaccessible places for a wired network
- Remote access that facilitate access to new geographic markets
- Distributed (local) decision making
- Connection to the Cloud enabling new capabilities for data aggregation and complex computing
- Distributed Big Data analysis with focus on critical data sources
Knowledge management

- For an enhanced advanced analytics methodology
 - Proactive asset maintenance
 - Root cause failure analysis
 - Remaining useful life identification
 - Simulation, prediction and scenario tools

- Information sources
 - Asset maintenance history
 - Condition monitoring
 - Inventory and purchasing transactions
 - Labor, craft, skills, certifications and calendars
 - Safety and regulatory requirements
 - ERP, sensors, CMMs, SCADA,…
 - New CPS will provide relevant/critical data/information
 - Simulations
Smart sensors and data acquisition technologies

Data sources (On-premises & Cloud)

Open Data | CRM | CMMS
MES | Geo Information | ERP

Communications in challenging environments

Analysis and decision making (Distributed & Cloud)

Analysis and decision making (Local)

Smart sensors

ECSEL-2014-1 Project – MANTIS Proposal number: 662189
Use cases

• Production asset maintenance will be validated in:
 – Shaver production plant
 – Pultrusion line
 – Press machine maintenance
 – Sheet metal working machinery
 – Compressor maintenance

• Vehicle maintenance management will be validated in:
 – Off-road and Special Purpose Vehicles
 – Railway systems

• Energy production asset management will be validated in:
 – Wind mills
 – Photovoltaic plants
 – Conventional energy production

• Health equipment maintenance will be validated in:
 – Health imaging systems

ECSEL-2014-1 Project – MANTIS Proposal number: 662189
Impact

• Competitiveness (C)
 – Reduction of unscheduled maintenance and its high costs
 – Optimised maintenance windows to reduce operating expense
 – Avoid unnecessary investments in redundancy
 – Minimise parts inventory
 – Increased equipment lifetime

• Assets Availability (A)
 – Unexpected failures reduction
 – Repair and overhaul time reduced
 – Improved reliability and uptime of assets
Impact

• Sustainability (S)
 – Lower energy and raw materials need
 – Lower CO2 footprint through full life cycle use and components re-use
 – Reduction in spare part consumption thus, smaller stock of spares
 – Increased plant safety
 – Work orders down
 – Efficient assignment of labour resources
 – More friendly and attractive working environments
 – Preparing the next generation of knowledge-workers
 – Improved competitiveness
 – Employment sustainability and new job creation based on new business models and opportunities
 – Stimulating societal cohesion by value added production instead of price competition
 – Increased life expectancy of ageing factories
 – Internationalisation opportunities
 – Key components re-use (rental or second-hand asset market)
Implementation

WP9 - Project management

WP2 - Service platform architecture development

WP3 - Smart sensing and data acquisition technologies

WP4 - Analysis and decision making functionalities

WP5 - HMI design and development

WP6 - Business impact and models

WP8 - Dissemination of knowledge and exploitation

WP7 - Validation of MANTIS solutions in relevant scenarios

WP1 - Service platform architecture requirement definition. Scenarios and use cases descriptions

ECSEL-2014-1 Project – MANTIS Proposal number: 662189
Thank you