Agile, eXtensible, fast I/O Module for the cyber-physical era

Road2CPS

Vienna, 14th April 2016

Brief introduction to the AXIOM project

Roberto Giorgi

University of Siena, Italy
AXIOM OBJECTIVES

• OBJ1) Realizing a small board that is flexible, energy efficient and modularly scalable
 – Flexibility: FPGA provides acceleration, custom interconnects, ability to distribute threads across boards
 – Energy efficiency: low-power ARM, FPGA
 – Modularly scalable: fast+inexpensive interconnects based on SATA/USB-C, distributed shared memory across boards

• OBJ2) Easy programmability of multi-core, multi-board, FPGA
 – Programming model: Improved OmpSs
 – Runtime & OS: improved thread management

• OBJ3) Leveraging Open-Source software to manage the board
 – Compiler: BSC Mercurium
 – OS: Linux
 – Drivers: provided as open-source by partners

• OBJ4) Easy Interfacing with the Cyber-Physical World
 – Cyber-Physical World: integrating Arduino support for a plenty of pluggable board (so-called “shields”)
 – Platform: building on the UDOO experience from SECO

• OBJ5) Enabling real time movement of threads
 – Runtime: will leverage the EVIDENCE’s SCHED_DEADLINE scheduler (i.e. EDF) included Linux 3.14, UNISI’s low-level dataflow-based thread management techniques

• OBJ6) Contribution to Standards
 – Hardware: SECO is founding member of the Standardization Group for Embedded Systems (SGET)
 – Software: BSC is member of the OpenMP consortium
EASY PROGRAMMABILITY
VIA OPENMP-SS (OMPSS)

Only 3 lines of code to
- accelerate code on FPGAs
- distributed code across
 several AXIOM boards

```
1 #pragma omp target device(fpga, smp) copy-deps
2 #pragma omp task in(a[0:64*64-1], b[0:64*64-1]) out(c[0:64*64-1])
3 void matrix_multiply(float a[64][64],
4    float b[64][64],
5    float out[64][64]) {
6        for (int ia = 0; ia < 64; ++ia)
7            for (int ib = 0; ib < 64; ++ib) {
8                float sum = 0;
9                for (int id = 0; id < 64; ++id)
10                    sum += a[ia][id] * b[id][ib];
11                out[ia][ib] = sum;
12            }
13        }
14 }
15 ...
16 int main( void ){
17 ...
18 matrix_multiply(A,B,C1);
19 matrix_multiply(A,B,C2);
20 matrix_multiply(C1,B,D);
21 ...
22 #pragma omp taskwait
23 }
```

<table>
<thead>
<tr>
<th>Application</th>
<th>Seq - DMA version</th>
<th>pthread version</th>
<th>OmpSS version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesky</td>
<td>71</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>Covariance</td>
<td>94</td>
<td>29</td>
<td>3</td>
</tr>
<tr>
<td>64x64</td>
<td>95</td>
<td>39</td>
<td>3</td>
</tr>
<tr>
<td>32x32</td>
<td>95</td>
<td>39</td>
<td>3</td>
</tr>
</tbody>
</table>
CAN WE DO THAT?

- SECO/UNISI achievements:
 - 2014: UDOO-ARM (99 $ PC+Arduino) → 600k$ on Kickstarter
 - 13th April 2016: UDOO-x86 (PC+Arduino, 10x faster than Raspberry-3) → 100k$ in 7 hours (!) on Kickstarter
FIRST PROTOTYPE UNDER REVIEW

- Stackup definition
 - 10 layers PCB
 - HS/LS/power planes arrangement
- Placement
 - Achieve mechanical and electrical constraints
- Routing (WIP)
 - Design for power/signal integrity
- 3D model available
AXIOM – THE MODULE-v2

• KEY ELEMENTS
 – K1: ZYNQ FPGA (INCLUDES 6 ARM CORES)
 – K2: ARM GP CORE(S)
 – K3: HIGH-SPEED & INEXPENSIVE INTERCONNECTS
 – K4: SW STACK – OMPSS+LINUX BASED
 – K5: OTHER I/F (ARDUINO, USB, ETH, WIFI, …)
CONSORTIUM EXPERTISE

• VIMAR, HERTA – 2 KILLER APPLICATIONS
• SECO – hardware module realization
• FORTH – high-speed interconnects
• EVI – Runtime, OS (Linux 3.14 real time scheduler)
• BSC – programming models
• UNISI – simulation, evaluation, coordination, architecture
WORKPACKAGES

• WP1: **Management** – UNISI (leader-Macy-project manager),
 ALL partners (mandatory)
• WP2: **Dissemination and Exploitation** – UNISI (leader-Caporali),
 ALL partners
• WP3: **Scenario Definition and App. Porting** – UNISI (leader-Rizzo),
 VIMAR, HERTA
• WP4: **Programming Model** – BSC (leader-Martorell),
 EVI, FORTH, SECO, HERTA
• WP5: **Runtime and OS** – EVI (leader-Gai),
 BSC, FORTH, SECO, UNISI
• WP6: **Platform** – SECO (leader-Catani),
 BSC, EVI, FORTH, UNISI, VIMAR
• WP7: **Simulation and Evaluation** – UNISI (leader-Giorgi),
 ALL partners
CONCLUSION - AXIOM IMPACT

• Realize a prototype module “ready-for-market”
 – VIMAR, HERTA first customers
 – for the public afterwards

• Strengthen European industry and research
 – in the supply, operate and use of Embedded Systems, achieving world-leadership
 – development of autonomous technology

• Development of extreme-performance system software and tools
 – European research at the forefront
TOWARDS
HPC + EMBEDDED CONVERGENCE
Agile, eXtensible, fast I/O Module for the cyber-physical era

PROJECT ID: 645496